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Chapter 3  Maxwell’s Equation 
 
3.1 Electromagnetic fields 
 
In the study of electromagnetics, we are concerned with four vector quantities called electromagnetic fields: 
 

 E  : electric field strength (volt per meter V/m)  
 D  : electric flux density (coulombs per square meter C m/ 2 ) 

H   : magnetic field strength (amperes per meter A/m) 
B   : magnetic flux density (webers per square meter Wb m/ 2 ) 

 
3.2 Maxwell’s Equation for Static Filed 
 
When physical properties of electromagnetic field is static, i.e., filed does not change by time, electrostatic field 
and magnetostatic field are independent and satisfies the following relations to its sources. The source for the 
electrostatic filed is the electric charge density ρ(C / m )3  and the magnetostatic filed is generated by the 

electric current density J (A / m )2 as follows: 
 
Electrostatic fields 

rotE = 0    (3.2.1) (conservation field) 
divD = ρ    (3.2.2) (electric Gauss’ law) 

 
Magnetostatic fields 

divB = 0    (3.2.3) (magnetic Gauss’ law) 
rotH J=    (3.2.4) (Ampere’s law) 

 
When the fields change by time, Faraday’s law of induction relates the magnetic filed to the electric field. 
 

rot
t

E B
= −

∂
∂

   (3.2.5) 

 
We have to check the consistency of Equations(3.2.1)-(3.2.5). Conservation (continuity ) law for current and 
charge densities is given by: 
 

div
t

J + ∂
∂

=
ρ 0    (3.2.6) 

This law of conservation of electric charge can be think as the definition of the electric current. By taking the 
divergence of (3.2.4), we have 

div rot div
t

( )H J= = −
∂
∂

≠
ρ 0  (3.2.7) 

(3.2.7) cannot satisfies the vector equation div rot( )A = 0 , which stands for any vector quantity of A . 
Therefore, (3.2.1)-(3.2.5) have to be modified for time-varying electromagnetic field. 
 
3.3 Maxwell’s Equation for Time-varying Filed 
 
J.C.Maxwell (1831 – 1879) introduced the new term which is called 

displacement current density 
∂
∂
D
t

 into (3.2.4) and re-defined the 

Ampere’s law as: 

rot
t

H J D
= +

∂
∂

   (3.3.1)   

 
Taking the divergence of (3.3.1) yield: 
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div rot div
t

div div
t

( )H J D J= +
∂
∂

= +
∂
∂

=
ρ 0   (3.3.2) 

 
and it satisfies vector equation div rot( )A = 0 . 
 
For the time-varying electromagnetic field, all the field quantities have to satisfy the following Maxwell’s 
equation. 

rot
t

E B
= −

∂
∂

   (3.3.3) (Faraday’s law of induction) 

rot
t

H J D
= +

∂
∂

   (3.3.4) (Ampere’s law) 

divB = 0    (3.3.5) (magnetic Gauss’ law) 
divD = ρ    (3.3.6) (electric Gauss’ law) 
 

It should be noted that these four equations are not independent, when we assume the continuity equation (3.2.6) 
is given as a definition. 
 
 
3.4 Constitutive Relations 
 
Physically, the constitutive relations provide information about the environment in which electromagnetic fields 
occur – for example, free space, water, solid and plasma media. Mathematically, we can characterize as follows a 
simple medium with a permittivity ε  and permeability µ . 
 

D E= ε     (3.4.1) 
B H= µ    (3.4.2) 

 
(3.4.1) and (3.4.2) are the constitutive relations for the simple medium. For free space,  
 
  ε ε= = × −

0
12885 10. (F / m)  (3.4.3) 

µ µ π= (H / m)0 = × −4 10 7  (3.4.4) 
 
3.5 Maxwell’s Equation for Time-Harmonic Fields 
 
The electromagnetic field at a single frequency can be represented by the time-harmonic fields. By using the 
phase notation, the electric field of time and space function can be represented by: 
 

E E( , , , ) ( , , )x y z t x y z↔   (3.5.1)) 
 

The E  vector is now a complex vector, which is only a function of space. As discussed in Chapter 2, the time 
derivatives can be represented by jωt  and the Maxwell’s equation in (3.3.3)-(3.3.6) is now rewritten as for 
time-harmonic fields as: 
 

rot jE B= − ω    (3.5.2) 
rot jH J D= + ω    (3.5.3) 
divB = 0    (3.5.4) 
divD = ρ    (3.5.5) 

 
and the equation of conservation of charge (3.2.6) is given by: 
 

div jJ + =ωρ 0   (3.5.6) 
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3.6 Lorentz Force Law 
 
The Lorentz force law specifies the force acting on particle with charge q when it is moving with velocity v  in 
an electromagnetic field characterized by E  and B . 
 

F E v B= + ×q( )    (3.6.1) 
 
 
3.7 Poynting’s Theorem 
 
 
Using the vector identity H E E H E H⋅ − ⋅ = ×rot rot div( )  we find 
 

div
t t

( )E H H B E D J E× = − ⋅
∂
∂

− ⋅
∂
∂

− ⋅   (3.7.1) 

 

Using the constitutive relations and noticing that H H H H⋅
∂
∂

=
∂
∂

⋅L
NM

O
QPt t

1
2

, we ca write 

div
t t

( )E H H H E E J E× +
∂
∂

⋅F
HG

I
KJ +

∂
∂

⋅F
HG

I
KJ + ⋅ =

1
2

1
2

0µ ε  (3.7.2) 

 
Note that each term in the above equation has the unit Watts m/ 3 .  
 

J E⋅  (3.6.4)  the power lost per unit volume by the electric field to heat 

UE = ⋅
1
2
εE E  (3.7.3) Stored electric energy 

UH = ⋅
1
2
µH H  (3.7.4) Stored magnetic energy 

S E H= ×  (3.7.5) Poynting vector 
 
(3.7.2) shows the conservation of power. The Poynting vector represents flow of electromagnetic power per unit 
area. 
 
For time-harmonic electromagnetic fields, the time-average Poynting’s vector S  is defined as the average of 

the time-domain Pyinting vector S( , , , )x y z t  over a period T =
2π
ω

. 

S E H= ×z1
2 0

2

π
ω

π

( , , , ) ( , , , )x y z t x y z t d t  (3.7.6) 

From section 1.3, we conclude that 

S E H= ×
1
2

Re *l q    (3.7.7) 


