Chapter 4

4.1 Electromagnetic Sources

4.2 Uniform plane wavesin free space

Maxwell’s equation in free space is given by:

oH
otE =—u,— (4.2.1
Ho ot ( )

oE
rotH = ¢,— 422
) ot ( )
divE=0 (4.2.3)
divH =0 (4.2.4)
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which is satisfied by electromagnetic filed in source free space. In this notation, the constitutive relations are used.

D=¢,E (4.25)
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B = u,H (4.2.6)

(4.2.1)-(4.2.4) can be considered as simultaneous differential equations having two unknowns, i.e., E andH . We
will delete one of the unknowns from the four equations. Since E and H have the same form, it can be done in
the same manner. Here, we will deleted H  first.

rot(rotg) = —rot(yof;—l;l)

2

0°E
=— — (4.2.6
Ho€o o2 ( )

And using the vector identity,

rot(rotg) = grad(div) — AE divE =0
=-AE (4.2.7)
where A indicates Laplacian to vector, and we have
2
AE — 1,6, % =0 (4.2.8)

2
AH — ﬂogoaaTH =0 (4.2.9)

2

The time-harmonic representation of the wave equation (4.2.8) and (4.2.9) are give as:

AE - @®puye,E=0 (4.2.10)
AH - @ 1ye,H =0 (4.2.11)

In the Cartesian coordinate, the Laplacian can be defined as:

2 2 2
0 O i 0 (4.2.12)

A=i +1i +
“ox? Yoy* oz

and the vector notation in (4.2.8)(4.2.9) can be re-written as:

2 2 2 2

aa )I(Ez N aa ;/—:2 .\ 8aZEZX _ ﬂogo% _0 (4.2.13)
aZEy+82Ey+azEy_ﬂg 7 g (4.2.14)
8X2 ayZ aZZ 0“0 atz L.
6°E, &°E, O°F, =

o Top Top Hefoge O @219

It should be noticed that (4.2.13)-(4.2.15) are second-order differential equations of electrical field in time and
space. This form of equation is generally refereed as wave equations. The time-varying electromagnetic field in
free space have to satisfy the wave equation of (4.2.13)-(4.2.15).

4.3 Plane-wave solution
Assume the followings and solve  (4.2.13)-(4.2.15).

Assumption (1) : Wave propagates to z direction.
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0 0
(2) : Thewaveisuniformin the x-y plane. Thisis mathematically identical to :a— = 8_ =0
X oy

By using the assumption (2), (4.2.13)-(4.2.15) can be simplified as:

0°E, OE,
? — Ho€g ? =0 (431)
°E, O°E,
?— ﬂogo? =0 (4.3.2)
O°E O°E
aTZZ - ﬂogoaTzz =0 (433)

Without loosing the generality, we can rotate the coordinate and have:
E,=0E#0 (4.3.9)

Then we have non-zero solution of E, and E, . Now we come back to the Maxwell’s equation.

X y z

rooE={0 O 2=i OF,
oz 7 oz
E, 0 E,
oH . OH,
=—u,—=—I — (435
Ho at yHo ot ( )

Thisequationindicatesthat H, # 0,H, = H, =0, and

o0y,

5| oH
roH=|0 0 —|=-i —2
0z 0z
0 H, 0
oE . oE
= — = X 4.3.6
&y ot x€o ot ( )

showsthat E, # 0, E, = 0. Then we can find that only

O°E, O°E,
? — Uy€g ? =0 (4.3.7)

gives the non-zero plane wave solution.

4.4 General solution to the plane-wave equation
The general solution to (4.3.7) is given by

E = f(z—ct)+ f,(z+ct) (4.4.2)
where
1

C=
VMoo
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is the velocity of light in free space, and f,, f,are arbitrary functions. f;, f,indicates that the wave solution

oH
propagate without deforming at the velocity of c. By substituting (4.4.1) into rotE = — E we obtain

H, = nil f(z—ct)- f(z+at)] 43
0

Mo = /% ~ 376.6 =120z (4.4.4)
0

istheintrinsic impedance of free space.

where

The time-harmonic wave equation can be obtained from (4.3.7) as:

O°E, O°E,

? + IUOSOG)ZEX = ? + kZEX =0 (445)

K=w. s, = @ wave number (4.4.6)
Cc

and the general solution to (4.4.6) is given by
E .= Ae ™+ A (4.4.7)

(4.4.6) is called dispersion relation, which determines the wave number of the solution of the wave equation. By
re-writing this time-harmonic notation in time-domain, we have

E, (zt) = Re)lAe ™ + A2e+ikzhej“"t = A cos(wt — kz) + A, cos(wt + kz) (4.4.8)

and this equation indicates a sinusoidal wave propagating to the z-direction at the velocity of c. The wavelength
A satisfies

E, %
A= 2r (4.4.9) ]—-._ A= 2u/k

k
-ul—{l‘-—\
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The figures show how the solution, which can now be
recognized as a sinusoidal wave, propagates with time.
Imagine we ride along with the wave. At what velocity
shall we move in order to keep up with the wave?
Mathematically, the phase argument of the term
cos(wt — kz) must be constant. That is,

wt —kz=aconstant (4.4.10)
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So the velocity of propagation is given by

dz @
T oy=— 4.4.17)
dt k

From (4.4.6) we obtain the phase velocity

V= % __1 (4.4.12)

vV Hoéo

The plane wave solution, which propagates to z-direction, then can be written as;

E=xEege ™ (4.4.13)
H=y |[Eek (4.4.14)
Ho
And the Poyinting vector is
E2
S=27—"2co5 (at —kz) (4.4.15)
o

Notice that in al the above discussions, the solution in (4.4.7),(4.4.8) or equivaently (4.4.13) are independent of a
and y coordinates. In other words for an observer anywhere in the x-y plane with the same value for z, the
phenomena are the same. The constant phase front is defined by setting the phase in (4.4.7) equal to a constant.

We have
kz=C (4.4.16)

where C is a constant defining a plane perpendicular to thezaxisat z= C/ k . We call waves whose phase fronts
are planes plane waves. A plane wave with uniform amplitudes over its constant-phase planes is called a uniform

plane wave.

The power density carried by a uniform wave is calculated by the time-average Poynting vector.
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4.5 Polarization
The uniform plane wave discussed in the previous section is
E(zt) = E, cos(wt — kz) X (45.1)

Tracing the tip of the vector E at any point z will show that the tip always stays on the x axis with maximum
displacement E, . We thus conclude that the uniform plane wave islinearly polarized.

Now we consider a plane wave with the following electric-filed vector.
E = xae (%) + ype =) (45.2)
Thered time-space E vector in (4.5.2) has x and y components:

E, =acos(wt—-kz+¢,) (4.5.3)
E, =bcos(at —kz+ ¢,) (4.5.4)

where a and b are real constants. To determine the locus of thetip of E vector in the x-y plane as a function of

time at any z, we can eliminate the variable (wt —kz) from (4.5.3)(4.5.4) to obtain an equation for E, and
E

v

(DLiner Polarization

p=¢,—¢,=0r7 (45.5)
E, = i(g) E, (4.5.6)
(2)Circular Polarization
b=do—dy=%7 (45.7)
A= E =1 (4.5.8)
a E, E,

and
| |0, af

E, =acos(wt—kz+¢,) "
(45.9) E,

E, = —bsin(at - kz+¢,) ' a8l
(4.5.10) -
|
b
E,

E +E’=a’
(4.5.11)

0. 2a|
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(3)Elliptical Polarization

The wave (4.5.2) is elliptically polarized when it is neither linearly nor circularly polarized. Consider the case
¢=-n12 and A=bla=2.

E, =acos(at—kz+¢,) (45.12)
E, =2asin(et —kz+4¢,) (4.5.13)

By eliminating t yields

2 2
(%) {%} _1 (4.5.14)

Let the complex electric filed be
E = (XE, + yE,)e @ (4.5.15)

E .
— = Ae¥ (4.5.16)

then, all the polarization status can be expressed by using (A, @) .

E .
The figure shows the polarization chart in x-y plane or complex —* = Ael? plane.
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4.6 Planewavein dissipative media

The most material has electrical conductivity, and its effect is characterized by the conductivity o . Ohm's law
states that

J.=oE (4.6.1)
where J_ denotes the conducting current. From Ampere's law,
rotH =J + jwD (4.6.2)

we can see that current density J can embody two kinds of currents- namely, the source current J, and the
conducting current J .. Then, in the conducting medium, the Ampere’s law becomes

rotH = jo(e— j Z)E+J, (4.6.3)
w
Thus we define
e=e—j2 (4.6.4)
w

the conductivity becomes the imaginary part of the complex permittivity & . Then the Maxwell’s equation in a
conducting medium devoid of any source can be written as

rotE = — jouH (4.6.5)
rotH = joweE (4.6.6)
divH =0 (4.6.7)
divE =0 (4.6.8)

where ¢ isthe complex permittivity. The wave equation derived from (4.6.5)-(4.6.8) can be written as

AE — 0® 1ueE = 0 (4.6.9)

The set of plane-wave fieldsis till a solution of Maxwell’s equations. Namely,

E=XEge ™ (4.6.10)
H= y\EEOeij (4.6.11)
7]
where
k? = w’ue (4.6.12)

isthe dispersion relation derived from the wave equation and

(4.6.13)

77=ﬁ
£

isthe intrinsic impedance of the isotropic media. Notethat k and 7 are now complex numbers.
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Because kK and 7 arenow complex numbers, we can rewrite these parameters as.

K=k, - jk (4.6.14)
n =|nje’ (4.6.15)

Substitution of (4.6.14) in (4.6.10) and (4.6.11) yields

E = XE,e “’e *** = XE, (4.6.16)
H= 9\/ZEOe"" R (4.6.17)
£
Theinstantaneous valueis E, (z,t) = Re(E,e'*) and from (4.6.16) we find
E, = E,e? cos(wt -k, 2) (4.6.18)

The above equation represents awave traveling in the z direction with avelocity equal to v, where

vV=—o 4.6.19
K. (4.6.19)

Asthe wave travels, the amplitude is attenuated exponentialy at therate K, nepers per meter.

We define a penetration depth d; such that, when k,z=k,d, =1, the amplitude of the electric field shown in
(4.6.18) will decay to /e of its value at z=0.

p

1
K, ( )

For conducting media, we have

1

. O |2 .
K=\ ue {1— j —} =k — jk (4.6.21)
e

1
K ~ a)Z,ng P 2
[k” : {(UJlH @622

where o/ we iscalled the loss tangent of the conducting media.

(1) Wavesin Non-dissipative Media

In material, where the electrical conductivity is zero, the wave behaves similar to that in free space. However, due
to x and ¢, thespeed of the wave is given by

v=1/.eu (4.6.23)
(2) Wavesin Slightly Conducting Media

A dlightly conducting medium is one for which o/ we << 1. The value of k in (4.6.21) can be approximated by
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1
K =w\ us {1— j i}z =\ us(l— | L) (4.6.24)
we 2we

and we find
kg = @4 ue (4.6.25)
kK =2 |£ (4.6.26)
2\ u

In this condition, the penetration depth is given by

o2 w2
o\N¢&

(3) Wavesin Highly Conducting Media

A highly conducting medium is also called a good conductor, for which o/ we >> 1. In this case, the wave
number k can be approximated by

k=wus {1- j i}z —w yg(%j(l— i (4.6.28)

Therefore, the penetration depth becomes

d = |- =5 (4.6.29)

The symbol ¢ signifies that dp is so small it is better caled the skin depth ¢. For a good conductor, the

conducting current concentrates on the surface and very little flows inside the conductor. This phenomenais called
the skin effect.

In the above discussion, we used the complex permittivbity defined by (4.6.4). However, if we substitute (4.6.4)
into (4.6.9), we have

AE — 0® usE — joouocE =0 (4.6.30

If we neglect the third term in (4.6.30) hisis a wave equation given in (2.1.1) and if we neglect the second term,
this is a diffusion equation given in (2.3.8). The loss tangent o/ we defines the contribution of the second and
the third terms:. It means that, the in Nondispersive media, the electromagnetic wave is governed by the wave
equation, and in highly conducting media, it is governed by a diffusion equation. The time harmonic solution of
wave equation gives the unified solution to the wave equation, when in highly conducting media, but the physical
properties of electromagnetic waveis quite different.
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