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Chapter 4  Waves in Unbounded Medium 
 
4.1 Electromagnetic Sources 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2 Uniform plane waves in free space 
 
 
Maxwell’s equation in free space is given by: 

rot
t

E H
= −

∂
∂

µ0  (4.2.1) 

rot
t

H E
=

∂
∂

ε 0  (4.2.2) 

divE = 0  (4.2.3) 
divH = 0  (4.2.4) 

 
which is satisfied by electromagnetic filed in source free space. In this notation, the constitutive relations are used. 
  

D E= ε 0  (4.2.5) 
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B H= µ0  (4.2.6) 
 
(4.2.1)-(4.2.4) can be considered as simultaneous differential equations having two unknowns, i.e., E and H . We 
will delete one of the unknowns from the four equations. Since E and H have the same form, it can be done in 
the same manner. Here, we will deleted H  first. 
 

rot rot rot
t

( ) ( )E H
= −

∂
∂

µ0  

= −
∂
∂

µ ε0 0

2

2
E
t

 (4.2.6) 

 
And using the vector identity, 
 
 rot rot grad div( ) ( )E E E= − ∆  （ divE = 0） 
   = −∆E  (4.2.7) 
where ∆  indicates Laplacian to vector, and we have 
 

 ∆E E
−

∂
∂

=µ ε0 0

2

2 0
t

 (4.2.8) 

 ∆H H
−

∂
∂

=µ ε0 0

2

2 0
t

 (4.2.9) 

The time-harmonic representation of the wave equation (4.2.8) and (4.2.9) are give as: 
 

∆E E− =ω µ ε2
0 0 0  (4.2.10) 

∆H H− =ω µ ε2
0 0 0  (4.2.11) 

 
In the Cartesian coordinate, the Laplacian can be defined as: 
 

 ∆ =
∂
∂

+
∂
∂

+
∂
∂

i i ix y zx y z
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2

2
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2  (4.2.12) 

 
and the vector notation in (4.2.8)(4.2.9) can be re-written as: 
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∂
∂

+
∂
∂

+
∂
∂

−
∂
∂

=
2

2

2

2

2

2 0 0

2

2 0
E
x

E
y

E
z

E
t

y y y yµ ε  (4.2.14) 
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It should be noticed that (4.2.13)-(4.2.15) are second-order differential equations of electrical field in time and 
space. This form of equation is generally refereed as wave equations. The time-varying electromagnetic field in 
free space have to satisfy the wave equation of (4.2.13)-(4.2.15). 
 
 
4.3 Plane-wave solution 
 
Assume the followings and solve  (4.2.13)-(4.2.15). 
 
Assumption  (1) : Wave propagates to z direction. 
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  (2) : The wave is uniform in the x-y plane. This is mathematically identical to :
∂
∂

=
∂
∂

=
x y

0  

 
By using the assumption (2), (4.2.13)-(4.2.15) can be simplified as: 
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Without loosing the generality, we can rotate the coordinate and have: 
 

E Ey x= ≠0 0,    (4.3.4) 
 
Then we have non-zero solution of Ex and Ez . Now we come back to the Maxwell’s equation. 
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y  (4.3.5) 

This equation indicates that H H Hy x z≠ = =0 0, , and  
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shows that E Ex z≠ =0 0, . Then we can find that only  
 

 
∂
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x xµ ε   (4.3.7) 

 
gives the non-zero plane wave solution. 
 
 
4.4 General solution to the plane-wave equation 
 
The general solution to (4.3.7) is given by  
 
 E f z ct f z ctx = − + +1 2( ) ( )  (4.4.1) 
where 

 c m s= = ×
1 3 10
0 0

8

µ ε
( / )  (4.4.2) 



Chapter 4  Waves in Unbounded Medium 4

is the velocity of light in free space, and f f1 2, are arbitrary functions. f f1 2, indicates that the wave solution 

propagate without deforming at the velocity of c. By substituting (4.4.1) into rot
t

E H
= −

∂
∂

µ0 we obtain 

 H f z ct f z cty = − − +
1

0
1 2η
( ) ( )l q  (4.4.3) 

where 

 η µ
ε

π0
0

0

376 6 120= ≅ ≅.     (4.4.4) 

is the intrinsic impedance of free space. 
 
 
The time-harmonic wave equation can be obtained from (4.3.7) as: 
 

 
∂
∂

+ =
∂
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+ =
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z
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z
k Ex

x
x

xµ ε ω   (4.4.5) 

 k
c

= =ω µ ε ω
0 0  wave number  (4.4.6) 

 
and the general solution to (4.4.6) is given by 
 
 E Ae A ex

jkz jkz= +− +
1 2     (4.4.7) 

 
(4.4.6) is called dispersion relation, which determines the wave number of the solution of the wave equation. By 
re-writing this time-harmonic notation in time-domain, we have 
 

 E z t A e A e e A t kz A t kzx
jkz jkz j t( , ) Re cos( ) cos( )= + = − + +− +

1 2 1 2c ho tω ω ω   (4.4.8) 

 
and this equation indicates a sinusoidal wave propagating to the z-direction at the velocity of c. The wavelength 
λ satisfies 
 

 λ π
=

2
k

   (4.4.9) 

 

 
 
 
The figures show how the solution, which can now be 
recognized as a sinusoidal wave, propagates with time. 
Imagine we ride along with the wave. At what velocity 
shall we move in order to keep up with the wave? 
Mathematically, the phase argument of the term 
cos( )ωt kz− must be constant. That is,  
 

ωt kz− = a constant  (4.4.10) 
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So the velocity of propagation is given by 
 

  
dz
dt

v
k

= =
ω

   (4.4.11) 

 
From (4.4.6) we obtain the phase velocity 
 

v
k

= =
ω

µ ε
1

0 0

   (4.4.12) 

 
The plane wave solution, which propagates to z-direction, then can be written as; 
 

E x= −E e jkz
0    (4.4.13) 

 

0
0

0

jkzE eε
µ

−=H y   (4.4.14) 

 
And the Poyinting vector is 

S z= −
E t kz0

2

0

2

η
ωcos ( )   (4.4.15) 

 
Notice that in all the above discussions, the solution in (4.4.7),(4.4.8) or equivalently (4.4.13) are independent of a 
and y coordinates. In other words for an observer anywhere in the x-y plane with the same value for z, the 
phenomena are the same. The constant phase front is defined by setting the phase in (4.4.7) equal to a constant. 
We have 

kz C=     (4.4.16) 
where C is a constant defining a plane perpendicular to the z axis at z C k= / . We call waves whose phase fronts 
are planes plane waves. A plane wave with uniform amplitudes over its constant-phase planes is called a uniform 
plane wave. 
 
The power density carried by a uniform wave is calculated by the time-average Poynting vector. 
 

  (4.4.17) 
{ } 20

0
0

1 1Re
2 2

Eµ
ε

= × =S E H * z
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4.5 Polarization  
 
The uniform plane wave discussed in the previous section is 

 
E x( , ) cos( )z t E t kz= −0 ω   (4.5.1) 

 
Tracing the tip of the vector E  at any point z will show that the tip always stays on the x axis with maximum 
displacement E0 . We thus conclude that the uniform plane wave is linearly polarized. 
 
Now we consider a plane wave with the following electric-filed vector. 
 
 E x y= +− − − −ae bej kz j kza b( ) ( )φ φ   (4.5.2) 
 
The real time-space E  vector in (4.5.2) has x and y components: 
 

E a t kzx a= − +cos( )ω φ    (4.5.3) 
E b t kzy b= − +cos( )ω φ    (4.5.4) 
 

where a and b are real constants. To determine the locus of the tip of E  vector in the x-y plane as a function of 
time at any z, we can eliminate the variable ( )ωt kz−  from (4.5.3)(4.5.4) to obtain an equation for Ex  and 
Ey . 
 
(1)Liner Polarization 
 φ φ φ π= − =a b 0,   (4.5.5) 

 E b
a

Ey x= ±( )    (4.5.6) 

 
(2)Circular Polarization 

 φ φ φ π
= − = ±a b 2

  (4.5.7) 

 A b
a

= =1 (4.5.8) 

and 
 

E a t kzx a= − +cos( )ω φ  
  (4.5.9) 

E b t kzy a= − − +sin( )ω φ  
  (4.5.10) 

E E ax y
2 2 2+ =   

  (4.5.11) 
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(3)Elliptical Polarization 
 
The wave (4.5.2) is elliptically polarized when it is neither linearly nor circularly polarized. Consider the case 
φ π= − / 2  and A b a= =/ 2 . 
 

E a t kzx a= − +cos( )ω φ   (4.5.12) 
E a t kzy a= − +2 sin( )ω φ   (4.5.13) 

 
By eliminating t yields 

 
22

1
2

yx EE
a a

   + =  
   

  (4.5.14) 

 
Let the complex electric filed be 
 
 E x y= + −( )E E ex y

jkz   (4.5.15) 

 
E
E

Aey

x

j= φ    (4.5.16) 

then, all the polarization status can be expressed by using ( , )A φ . 
 

The figure shows the polarization chart in x-y plane or complex 
E
E

Aey

x

j= φ  plane. 
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4.6 Plane wave in dissipative media 
 
The most material has electrical conductivity, and its effect is characterized by the conductivity σ . Ohm’s law 
states that 
 

J Ec = σ      (4.6.1) 
 
where Jc  denotes the conducting current. From Ampere’s law,  
 

rot jH J D= + ω      (4.6.2) 
 
we can see that current density J can embody two kinds of currents- namely, the source current J0  and the 
conducting current Jc . Then, in the conducting medium, the Ampere’s law becomes 
 

  rot j jH E J= − +ω ε σ
ω

( ) 0    (4.6.3) 

 
Thus we define 
 

ε = −ε σ
ω

j      (4.6.4) 

 
the conductivity becomes the imaginary part of the complex permittivity ε . Then the Maxwell’s equation in a 
conducting medium devoid of any source can be written as 
 
 

rot jE H= − ωµ      (4.6.5) 
rot jH E= ωε      (4.6.6) 
divH = 0      (4.6.7) 
divE = 0      (4.6.8) 

 
where ε  is the complex permittivity. The wave equation derived from (4.6.5)-(4.6.8) can be written as 
 
 

∆E E− =ω µ2 0ε      (4.6.9) 
 
The set of plane-wave fields is still a solution of Maxwell’s equations. Namely, 
 
  E x k= −E e j z

0      (4.6.10) 

  0
j zE e

µ
−= kH y ε

     (4.6.11) 

 
where 
 
  k 2 2= ω µε      (4.6.12) 
 
is the dispersion relation derived from the wave equation and  
 

  η
ε

=
µ

      (4.6.13) 

 
is the intrinsic impedance of the isotropic media. Note that k  and η  are now complex numbers. 
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Because k  and η  are now complex numbers, we can rewrite these parameters as: 
 
  k = −k jkR I      (4.6.14) 

  η η= e jφ      (4.6.15) 
 
Substitution of (4.6.14) in (4.6.10) and (4.6.11) yields 
 
  0

I Rk z jk z
xE e e E− −= =E x x     (4.6.16) 

  0
I Rk z jk z jE e e e φµ − − −=H y

ε
   (4.6.17) 

 
The instantaneous value is E z t E ex x

j t( , ) Re( )= ω  and from (4.6.16) we find 
 
  0 cos( )Ik z

x RE E e t k zω−= −    (4.6.18) 
 
The above equation represents a wave traveling in the z direction with a velocity equal to v, where 
 

  v
kR

=
ω

      (4.6.19) 

 
As the wave travels, the amplitude is attenuated exponentially at the rate kI  nepers per meter. 
 
We define a penetration depth d p  such that, when k z k dI I p= = 1, the amplitude of the electric field shown in 
(4.6.18) will decay to 1/e of its value at z=0. 
 

d
kp

I

=
1

      (4.6.20) 

 
For conducting media, we have 
 

  

1
2

1 R Ik j k jkσω µε
ωε

 = − = −  
   (4.6.21) 

1
2 2 2

2 21 1
2

R

I

k
k

ω µε σ
ω ε

      = + ±    
       

   (4.6.22) 

 
where σ ωε/  is called the loss tangent of the conducting media. 
 
(1) Waves in Non-dissipative Media 
 
In material, where the electrical conductivity is zero, the wave behaves similar to that in free space. However, due 
to µ  and ε , the speed of the wave is given by 
 
  v = 1/ εµ      (4.6.23) 
 
(2) Waves in Slightly Conducting Media 
 
A slightly conducting medium is one for which σ ωε/ << 1. The value of k in (4.6.21) can be approximated by 
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1
2

1 (1 )
2

k j jσ σω µε ω µε
ωε ωε

 = − = −  
  (4.6.24) 

 
and we find 
 
  kR = ω µε      (4.6.25) 

  kI =
σ ε

µ2
     (4.6.26) 

 
In this condition, the penetration depth is given by 
 
 

  d p =
2
σ

µ
ε

     (4.6.27) 

 
(3) Waves in Highly Conducting Media 
 
A highly conducting medium is also called a good conductor, for which σ ωε/ >> 1. In this case, the wave 
number k can be approximated by 
 
 

  

1
2

1 (1 )
2

k j jσ σω µε ω µε
ωε

   = − = −     
  (4.6.28) 

 
Therefore, the penetration depth becomes 
 
 

  d p = ≡
2

ωµσ
δ      (4.6.29) 

 
The symbol δ  signifies that d p  is so small it is better called the skin depth δ . For a good conductor, the 
conducting current concentrates on the surface and very little flows inside the conductor. This phenomena is called 
the skin effect. 
 
In the above discussion, we used the complex permittivbity defined by (4.6.4). However, if we substitute (4.6.4) 
into (4.6.9), we have  
 
 ∆E E E− − =ω µε ωµσ2 0j      (4.6.30 
 
If we neglect the third term in (4.6.30) his is a wave equation given in (2.1.1) and if we neglect the second term, 
this is a diffusion equation given in (2.3.8). The loss tangent σ ωε/  defines the contribution of the second and 
the third terms:. It means that, the in Nondispersive media, the electromagnetic wave is governed by the wave 
equation, and in highly conducting media, it is governed by a diffusion equation. The time harmonic solution of 
wave equation gives the unified solution to the wave equation, when in highly conducting media, but the physical 
properties of electromagnetic wave is quite different. 


