FD-TD

Finite-Difference Time-Domain

Maxwell方程式の 直接解法

電磁界散乱の数値解法

Maxwellの方程式の一次元化

$$rot\mathbf{H} = \varepsilon \frac{\partial \mathbf{E}}{\partial t}$$
$$rot\mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$$

$\frac{\partial E_x}{\partial E_x}$	$1 \frac{\partial H_y}{\partial H_y}$	
∂t	8	∂z
∂H_{y}	1	∂H_x
∂t	$-\mu$	∂z

• - -

時間一空間の離散化

$$z = i \cdot \Delta z$$
$$t = n \cdot \Delta t$$

 $F^{(n)}(i) = F(z,t) = F(i \cdot \Delta z, n \cdot \Delta t)$

Figure 2-1: Yee's lattice for the FDTD method.

時間・空間微分の差分化

Maxwellの方程式の差分化

∂E_x	$1 \frac{\partial H_y}{\partial H_y}$	
∂t	\mathcal{E} ∂z	
∂H_{y}	$1 \partial H_x$	
∂t	$-\frac{1}{\mu}\partial z$	

電磁界を計算のアルゴリズム $E_x^{n+1}(i) = E_x^n(i) - \frac{\Delta t}{\Delta z \varepsilon(i)} \left[H_y^{n+\frac{1}{2}}(i+\frac{1}{2}) - H_y^{n+\frac{1}{2}}(i-\frac{1}{2}) \right]$ $H_y^{n+\frac{1}{2}}(i+\frac{1}{2}) = H_y^{n-\frac{1}{2}}(i+\frac{1}{2}) - \frac{\Delta t}{\Delta z \mu(i)} \left[E_x^n(i+1) - E_x^n(i) \right]$

・常に以前の時間における電磁界を使って未来の電磁界を計算する。

•空間のパラメータ(導電率、誘電率)を容易に組 み込める

FDTD計算アルゴリズム

シミュレーション

(c)

Figure 4-4: Field distribution (a) and time-domain data (b) with 11.14GHz sinusoidal excitation after 1500 time steps.

ダイポールアンテナからの電波放射

SAR-GPR用に開発した広帯域アンテナアレイ

ビバルディアンテナから放射される電波の可視化

信号処理による埋設地雷 の3次元可視化

原波形

SAR-GPR信号処理画像

ロボット車両に搭載したSAR-GPR _{技術的ブレークスルー}

•アレイアンテナと信号処 理によるクラッタ雑音除去

・小型ベクトルネットワーク アナライザ(1.5kg)による 広帯域(10M-6GHz)計測 の実現

SAR-GPRによる地雷検知

PMA-2

不均質土壌中の地雷検知モデル

FDTD による不均質な土壌中の地雷検知シ ミュレーション

